Answer all the questions. Each question is worth 6 points. You may state correctly and use any result proved in the class. However if an answer is an almost immediate consequence of the stated result, such a result also need to

All topological spaces are assumed to be Hausdorff.

the space of bounded operators,

- 1) Let X be a complex normed linear space. Suppose $\mathcal{L}(X)$ equipped with the usual norm, is a Banach space. Show that X is a Banach space.
- 2) Let X be a normed linear space. Let $\{x_n\}\subset X$ is a sequence such that, the closed convex hull $K=\overline{CO(\{x_n\})}$ is a compact set. Let $x_0\in X$ and let $\mu=\sum \frac{1}{2^n}\delta(x_n)$. Suppose $x^*(x_0)=\int_K x^*d\mu$ for all $x^*\in X^*$. Show that $x_0\in K$.
- 3) Let X be a locally convex topological vector space. Let $F\subset X^*$ be a finite dimensional subspace. Show that there is a closed subspace $Y \subset X$ such that $Y^{\perp} = F$.
- 4) Let X,Y be LCTVS spaces. Let $T:X\to Y$ be an isomorphism. Suppose X^* and Y^* are equipped with the weak*-topology. Show that $T^*:Y^*\to X^*$ is an isomorphism.
- 5) Give examples of two normed linear spaces, and a continuous linear map T between them such that T has closed range but the range of T^* is not closed.
- 6) Show that the space of regular Borel probability measures on [0, 1], equipped with the weak*-topology is a metrizable space.
- 7) Let $D = \{z : |z| < 1\}$ be the open unit Disc. Let A(D) denote the space of bounded analytic functions on D equipped with the supremum norm. Let Fix NZI, let $F = \{p \in A(D) : p \text{ is a polynomial of degree atmost } n\}$. Show that A(D) = A(D) $Y \bigoplus F$ (direct sum) for some closed subspace $Y \subset A(D)$. Let $P: A(D) \to Y$ be the canonical projection. Show that P is not a compact operator.

- 8) Let X be a normed linear space. State and prove the Banach-Alaoglu theorem.
- 9) Let $T: \ell^2 \to \ell^2$ be defined by $T(\{\alpha_n\}) = \{\frac{\alpha_n}{n}\}$. Show that T is a compact operator.
- 10) Let $T \in \mathcal{L}(X)$ be such that T^* maps extreme points of the unit ball of X^* to extreme points of the unit ball of X^* . Show that T is an extreme point of the unit ball of $\mathcal{L}(X)$.